References
How to cite
Lorem ipsum dolor sit amet...
W4M/NMR
W4M/LC-MS
MetExplore
W4M/NMR - Processing
- Vu, T.N., Valkenborg, D., Smets, K., et al. (2011). An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinformatics, 12 : 405. doi : 10.1186/1471-2105-12-405
- Dieterle et al. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics.Analytical Chemistry, 78 (13 ):4281. https://doi.org/10.1021/ac051632c
W4M/NMR - Spectra annotation
- Tardivel, P., Canlet, C., Lefort, G.,Tremblay-Franco, M., Debrauwer., L., Concordet, D., Servien, R. (2017). ASICS : an automated method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics, 13 :109. http://dx.doi.org/10.1007/s11306-017-1244-5
W4M/NMR - File Reading & Pre-Processing
- Martin, M., Legat, B., Leenders, J.,Vanwinsberghe, J., Rousseau, R., Boulanger, B., Eilers, H.C., De Tullio, P. (2018). PepsNMR for 1H NMR metabolomic data pre-processing. Analytica Chimica Acta, 1019, 1-13. https://doi.org/10.1016/j.aca.2018.02.067
W4M/NMR - Statistical Analysis
- Guitton et al. (2017). Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. The International Journal of Biochemistry and Cell Biology. https://doi.org/10.1016/j.biocel.2017.07.002
- Rinaudo et al. (2016). Biosigner : a new method for the discovery of significant molecular signatures from omics data. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2016.00026
- Shared statistical history: W4M00001 (http://workflow4metabolomics.org/W4M00001)
- Shared statistical history: W4M00003 (http://workflow4metabolomics.org/W4M00003)
- Thévenot et al. (2015). Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research. 10. https://doi.org/10.1021/acs.jproteome.5b00354
- Van Belle et al. (2004). Biostatistics - a methodology for the health sciences. Wiley
- Wehrens (2011). Chemometrics with R: multivariate data analysis in the natural sciences and life sciences. Springer
W4M/NMR - Upload files
- Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier, Martin Čech, John Chilton, Dave Clements, Nate Coraor, Björn Grüning, Aysam Guerler, Jennifer Hillman-Jackson, Vahid Jalili, Helena Rasche, Nicola Soranzo, Jeremy Goecks, James Taylor, Anton Nekrutenko, and Daniel Blankenberg. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Research, Volume 46, Issue W1, 2 July 2018, Pages W537–W544, doi:10.1093/nar/gky379
W4M/LC-MS - Pre-Processing
- Bioconductor : opensource softaware for bioinformatics. (2018). Software packages : xcms (3.7). Repéré à http://bioconductor.org/packages/release/bioc/html/xcms.html
- Smith, C. A., Want, E.J., O’Maille, G., Abagyan, R., Siuzdak, G. (2006). XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry, 78 (3), 779–787. https://doi.org/10.1021/ac051437y
- Tautenhahn, R., Boettcher, C., Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504. https://doi.org/10.1186/1471-2105-9-504
W4M/LC-MS - Processing
- Dunn, W.B., Broadhust., D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N. (…) Goodacre, R. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6 :1060-1083. https://doi.org/10.1038/nprot.2011.335
- Van Der Kloet, F.M., Bobeldijk, I., Verheij, E.R., Jellema, R.H. (2009). Analytical error reduction using single point calibration for phenotyping. Journal of Research, 5132-5141. https://doi.org/10.1021/pr900499r
W4M/LC-MS - Annotation
- Schymanski, E.L., P. Singer, H., Slobodnik, J., M. Ipolyi, I., Oswald, P., Krauss, M. (…) Hollender, J. (2015). Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. 407 : 6237. https://doi.org/10.1007/s00216-015-8681-7
- Viant, M.R., Kurland, I.J., Jones, M.R., Dunn, W.B. (2017). How close are we to complete annotation of metabolomes ?. Chemical Biology, 37, 1-76. https://doi.org/10.1016/j.cbpa.2017.01.001
W4M/LC-MS - Statistical Analysis
- Guitton et al. (2017). Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. The International Journal of Biochemistry and Cell Biology. https://doi.org/10.1016/j.biocel.2017.07.002
- Rinaudo et al. (2016). Biosigner : a new method for the discovery of significant molecular signatures from omics data. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2016.00026
- Shared statistical history: W4M00001 (http://workflow4metabolomics.org/W4M00001)
- Shared statistical history: W4M00003 (http://workflow4metabolomics.org/W4M00003)
- Thévenot et al. (2015). Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research. 10. https://doi.org/10.1021/acs.jproteome.5b00354
- Van Belle et al. (2004). Biostatistics - a methodology for the health sciences. Wiley
- Wehrens (2011). Chemometrics with R: multivariate data analysis in the natural sciences and life sciences. Springer
W4M/LC-MS - Upload files
- Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier, Martin Čech, John Chilton, Dave Clements, Nate Coraor, Björn Grüning, Aysam Guerler, Jennifer Hillman-Jackson, Vahid Jalili, Helena Rasche, Nicola Soranzo, Jeremy Goecks, James Taylor, Anton Nekrutenko, and Daniel Blankenberg. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Research, Volume 46, Issue W1, 2 July 2018, Pages W537–W544, doi:10.1093/nar/gky379
MetExplore - Metabolic network content
- Thiele,I. and Palsson,B.Ø. (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc., 5, 93–121.
- Kanehisa,M., Furumichi,M., Tanabe,M., Sato,Y. and Morishima,K. (2017) KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 45, D353–D361.
- Caspi,R., Billington,R., Ferrer,L., Foerster,H., Fulcher,C.A., Keseler,I.M., Kothari,A., Krummenacker,M., Latendresse,M., Mueller,L.A., et al. (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 44, D471-80.
MetExplore - Metabolomic data mapping
- Heller,S.R., McNaught,A., Pletnev,I., Stein,S. and Tchekhovskoi,D. (2015). InChI, the IUPAC International Chemical Identifier. J. Cheminform., 7, 23. https://doi.org/10.1186/s13321-015-0068-4
- Merlet,B., Paulhe,N., Vinson,F., Frainay,C., Chazalviel,M., Poupin,N., Gloaguen,Y., Giacomoni,F. and Jourdan,F. (2016). A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks. Front. Mol. Biosci., 3, 2. https://doi.org/10.3389/fmolb.2016.00002
- Wohlgemuth,G., Haldiya,P.K., Willighagen,E., Kind,T. and Fiehn,O. (2010). The Chemical Translation Service--a web-based tool to improve standardization of metabolomic reports. Bioinformatics, 26, 2647–2648. https://doi.org/10.1093/bioinformatics/btq476
MetExplore - Pathway based analysis of metabolomics data
- Kanehisa,M., Furumichi,M., Tanabe,M., Sato,Y., Morishima,K. (2017). KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 45, D353–D361. https://dx.doi.org/10.1093%2Fnar%2Fgkw1092
- Kankainen,M., Gopalacharyulu,P., Holm,L. Oresic,M. (2011). MPEA--metabolite pathway enrichment analysis. Bioinformatics, 27, 1878–9. https://doi.org/10.1093/bioinformatics/btr278
MetExplore - Network based analysis of metabolomics data
- Faust,K. and van Helden,J. (2012) Predicting metabolic pathways by sub-network extraction. Methods Mol. Biol., 804, 107–30. https://doi.org/10.1007/978-1-61779-361-5_7
- Frainay,C. and Jourdan,F. (2017) Computational methods to identify metabolic sub-networks based on metabolomic profiles. Brief. Bioinform., 18, 43–56. https://doi.org/10.1093/bib/bbv115
- Lacroix,V., Cottret,L., Thébault,P. and Sagot,M.-F. (2008) An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans. Comput. Biol. Bioinform., 5, 594–617. https://doi.org/10.1109/TCBB.2008.79